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Inverse cascade in film flows
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Developed interfacial dynamics of thin film flows with moderate Reynolds numbers
exhibits a remarkable feature: the evolution is dominated by solitary-like pulses with
a natural large wavelength between them. This phenomenon is robust and resembles
the inverse energy cascade in two-dimensional turbulence. A new simple evolution
equation is proposed to describe the film flow dynamics which captures such an
inverse cascade. The equation combines the simplest kinematic nonlinearity with the
exact linear term. The spectral kernel of the linear term is found from the numerical
solution of the associated linear stability problem.

1. Introduction
Flow of a thin viscous film down an inclined plane is one of the most graphic and

simple extended systems, which has attracted much attention for half a century; see
review papers by Lin (1983) and Chang (1994). The intrinsic instability of the flow
entails rich interfacial wavy dynamics which has fascinated many researchers.

One of the most interesting phenomena in thin film flows for moderate Reynolds
numbers is the following. Near the inception point there is a number of ways to
form the waves: to force periodic excitations, to let natural unforced waves grow,
or to include wavelength variations through multiple-frequency forcing. However,
after sufficient nonlinear evolution, the interfacial dynamics is dominated by long
solitary waves regardless of initial perturbations. These solitary waves have distinctive
features: a broad-banded spectrum, robustness, and striking properties of coalescence
(Chang 1994).

Solitary waves in films have been reported in numerical simulations by Kheshgi
& Scriven (1987), Ho & Patera (1990), Malamataris & Papanastasiou (1991), and
Salamon, Armstrong & Brown (1994), and were seen in experiments by Kapitza &
Kapitza (1949) and Alekseenko, Nakoryakov & Pokusaev (1985). It is very interesting
that there appears to be a natural wavelength between solitary-like pulses which is
much larger than the film thickness, and, for long systems, does not depend on system
size. Liu & Gollub (1994) reported the formation of solitary pulses with a distance of
about 20 cm between them for a film with thickness about 1 mm. The same observation
was made by Ramaswamy, Chippada & Joo (1966) in numerical study of the full
Navier–Stokes problem for film flows. This unique feature resembles the inverse
energy cascade in two-dimensional turbulence and is the subject of the present study.

The dynamical complexity of film flows with a free boundary led to the invention of
asymptotic techniques to describe the dynamics in terms of simple reduced evolution
equations. The first method appeared in the seminal work of Benney (1966), who
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applied long-wavelength expansions to film flows. This approach led to the derivation
of the Benney equation, the Kuramoto–Sivashinsky (KS) equation, the Kawahara
equation, and their variants (Chang 1994, and references therein). In all these models,
the Reynolds number R is considered to be of order unity for the finite inclination
θ; surface tension W is assumed to be large. The equations gave a first insight in the
underlying interfacial dynamics; the KS equation has become a prototype for spatio-
temporal chaos. The Kawahara equation includes dispersion which synchronizes the
irregular patterns of the KS equation, similar to that in film flows.

These celebrated evolution equations exhibit important features of real film flows;
however, they are derived under the main assumption that the film flow is near the
onset of instability, i.e. weakly unstable. When this condition is not met, the KS-like
models are not satisfactory. For example, for the experimental data of Liu & Gollub,
R = 29, θ = 6.4◦,W = 35, the maximal growth rate predicted from the Benney, KS
and Kawahara equations is 45 times larger than the actual maximal growth rate (see
§ 5). Some of the properties of weakly unstable films are preserved for the flows with
higher Reynolds numbers; nevertheless, a new approach is needed to describe the
film dynamics with moderate Reynolds numbers more realistically.

Such approach was proposed initially by Shkadov (1973). Since the Reynolds
number of the flow is moderate, some ad hoc assumptions must be adopted. Shkadov’s
method is similar to the well-known Kármán–Polhausen boundary-layer theory, and
involves two main a priori hypotheses: (i) the spanwise momentum balance is assumed
to be dominated by hydrostatic forces, (ii) the velocity profile is assumed to be self-
similar and parabolic. The idea resulted in the so-called integral-boundary-layer (IBL)
equations, used in many works (Chang 1994; Chang et al. 1996, plus many references
therein). The interaction of solitary waves on the basis of the IBL model was
investigated by Chang, Demekhin & Kalaidin (1995); the resulting interfacial profiles
and coalescence of the solitary pulses are very similar to those observed experimentally.
Further development of the IBL method was done by Yu et al. (1995), using a more
general velocity profile than the conventional parabolic profile; Lee & Mei (1996)
retained more terms in equations and boundary conditions than in previous works
using the IBL method. Both theories reproduce the interfacial wave dynamics fairly
well; however, the resulting evolution equations are rather sophisticated. Overall, IBL
theory offers a remarkable ad hoc method, which allows the main features of the
interfacial dynamics to be captured for moderate Reynolds numbers.

Chang, Demekhin & Kopelevich (1993) mentioned the inadequacy of the IBL
model for R > 10, removed the imposition of a parabolic velocity profile, and studied
the ensuing boundary-layer equations with pertinent boundary conditions on the free
surface. The results are in agreement with experimental observations; however, the
theory remains quite complicated.

I propose an alternative approach to describe nonlinear wave evolution in thin film
flows for moderate Reynolds numbers. I begin with a full-scale numerical analysis of
the pertinent Orr–Sommerfeld linear stability problem. I compare the exact dispersion
relations obtained numerically with two conventional theories: (i) expansions of
Benjamin (1957) and Yih (1963) and the related Benney, KS and Kawahara equations,
and (ii) the integral-boundary-layer model. It turns out that the dispersion relations
of these conventional models already dramatically differ from the exact dispersion
relation by Reynolds number R ∼ 10. As a result, the conventional theories do not
reproduce the linear behaviour of the film flows for moderate Reynolds numbers.

The linear behaviour of any dynamical system is its basic-level property; it is
reasonable to expect therefore that nonlinear theory should represent well the linear
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behaviour. This is the motivation of the method proposed below. Note that Prokopiou,
Cheng & Chang (1991) and Chang et al. (1993) mentioned the importance of the
correspondence between linearized nonlinear theories and exact linear results in the
context of the thin films.

Combining the pertinent exact linear term, corresponding to the evaluated dis-
persion relation, with the simplest kinematic nonlinearity results in a new simple
evolution equation for downflowing films:

ht + 4hhx + L [h] = 0, L [h] =
1

2π

∫ ∞
−∞
−ω eik(x−y) h(y, t) dy dk. (1)

Here h(x, t) = H(x, t)− 1 is the deviation of the interface H(x, t) from its steady state.
The kernel ω(R,W , θ, k) of the spectral linear operator L is found numerically from
the linear stability problem and depends on the Reynolds number R, Weber number
W (dimensionless surface tension), inclination angle θ and wavenumber k. For small
Reynolds and large Weber numbers, ω may be approximated by its long-wavelength
expansion in power series of k. This leads to the (rescaled) Kuramoto–Sivashinsky
equation (Shkadov 1973; Nepomnyashchy 1974; Sivashinsky & Michelson 1980):

ht + hhx + hxx + hxxxx = 0. (2)

Retention of the next dispersive term leads to the (rescaled) Kawahara equation
(Topper & Kawahara 1978):

ht + hhx + hxx + γhxxx + hxxxx = 0. (3)

For moderate Reynolds numbers and moderate or small surface tensions model
(1) dramatically differs from the IBL, KS and Kawahara and other long-wavelength
asymptotic models. The exact dispersion relations in film flows for moderate Reynolds
numbers display remarkable features; the corresponding dispersion relations in other
hydrodynamic situations lead to the emergence of large structures.

The wavy profiles obtained by direct numerical simulations of (1) are similar to
the long solitary-like waves observed in experiments and numerical computations of
the full Navier–Stokes equations. The fine structure of ripples and another qualitative
and many quantitative characteristics of the waves are predicted well. Model (1) has a
broad range of validity and yields well-behaved and sensible solutions in a broad range
of parameters. Being simple and clear, equation (1) allows one to understand and to
explore the formation of complicated coherent structures in interfacial dynamics of
film flows.

2. Statement of the problem
Consider two-dimensional flow of a thin liquid layer with dynamic viscosity µ

and density ρ down an inclined plane under gravity, figure 1. The surrounding gas
is assumed to be weightless, quiescent, and inviscid with constant pressure p0. The
governing equations are

ux + vy = 0, (4)

R
(
ut + uux + vuy

)
= 2− 2px + uxx + uyy, (5)

R
(
vt + uvx + vvy

)
= −2 cot θ − 2py + vxx + vyy. (6)

Here x, y are streamwise and spanwise coordinates, respectively, in units of the
unperturbed film thickness d; u, v are the corresponding velocity components, referred
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Figure 1. Geometry of the film flow.

to U = gd2ρ sin θ/2µ, where g is the acceleration due to gravity; p is the pressure in
units of ρgd sin θ; t is the time referred to d/U; R = Udρ/µ = gd3ρ2 sin θ/2µ2 is the
Reynolds number.

The boundary conditions at the free film surface y = H(x, t) are expressed in terms
of the normal n and curvature S of the free surface, and the stress tensor T :

n =
(−Hx, 1)

(1+H2
x)

1/2 , S =
Hxx

(1+H2
x)3/2 , T =

(
ux − p 1

2

(
uy + vx

)
1
2

(
uy + vx

)
vy − p

)
. (7)

The full set of boundary conditions imposed on (4)–(6) is

non-slip on the bottom u = v = 0 at y = 0, (8)

stress condition T · n = −p0n+WSn at y = H, (9)

kinematic condition Ht + uHx − v = 0 at y = H. (10)

Here W is the dimensionless surface tension (Weber number) in units of ρgd2 sin θ.
The case of moderate Reynolds numbers is considered, R < 300 (see Chang 1994).

Equations (4)–(6) together with boundary conditions (8)–(10) constitute a free
boundary problem for H(x, t).

Conventionally, the film flows are assumed to have small or moderate Reynolds
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number, and large surface tension. However, in many cases the surface tension is not
large. For instance, in experiments by Liu & Gollub (1994) the flow parameters are:
R = 29, θ = 6.4◦, W = 35. Hence, the long-wavelength asymptotic expansions based
on largeness of surface tension cannot be applied here. This situation is the main
subject of the present study.

3. Full-scale problem of linear stability
The linear stability analysis of the problem provides the first insight into the

underlying interfacial dynamics. The full-scale numerical study of the pertinent Orr–
Sommerfeld eigenvalue problem is the subject of the present section.

The steady-state unidirectional solution by Nusselt for (4)–(6) is

H = 1, p = p0 + (1− y) cot θ, U(y) = 2y − y2. (11)

The linear stability analysis of the Nusselt flow (11) includes the following manipula-
tions: linearization (4)–(6) and (8)–(10) near (11), introduction of the stream function
ψ(x, y, t) for the disturbed flow, and use of the normal mode decomposition,

ψ(x, y, t) = φ(y)eikx+ωt, H = 1 + h, h = aeikx+ωt. (12)

The result is the well-known Orr–Sommerfeld eigenvalue problem for φ(y):

φ′′′′ − 2k2φ′′ + k4φ = R[(ikU + ω)(φ′′ − k2φ)− ikU ′′φ)], (13)

φ(0) = 0, φ′(0) = 0, φ′′(1) +

[
k2 − ikU ′′(1)

ikU(1) + ω

]
φ(1) = 0, (14)

φ′′′(1)− [3k2 + R(ikU(1) + ω)
]
φ′(1)− 2k2 cot β + 2k4W

ikU(1) + ω
φ(1) = 0. (15)

I concentrate on the temporal formulation of the stability problem, with real k and
complex ω. This is motivated by further inclusion of the dispersion relation obtained
numerically in the dynamic nonlinear equation.

The shooting method combined with the Newton–Raphson algorithm has been
used to solve the boundary-value problem (13)–(15). The implementation, based on
mathematica software, was not computationally optimal, but was chosen as an easily
controlled method giving immediate graphic insight into the results obtained. The
procedure involves two main steps: a guess of initial values for integration, and
iterations to reach the true solution. As an initial guess, cubic extrapolation of the
initial values of solutions for smaller k was chosen. For a very few initial points, the
long-wavelength asymptotic solution was used as an initial guess. The Jacobian matrix
was evaluated by second-order central differencing, i.e. two separate integrations of
problem (13)–(15) were done for variation of each parameter. The Runge–Kutta
fourth-order method was used for the integration. The whole technique turns out to
be very effective; only one iteration was required in most cases to reach accuracy of
10−4 or higher. I am indebted to Dr S. J. Weinstein for computing a few dispersion
relations by a finite-difference method to check my calculations; complete agreement
has been found between his and the present results.

The long-wavelength expansion of (13)–(15) gives (Benjamin 1957; Yih 1963)

ω ' −2ik +
[

8
15
R − 2

3
cot θ

]
k2 − 2

3
Wk4 for k � 1. (16)

Both the Benney (1966) and Kuramoto–Sivashinsky equation (2) yield dispersion
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relation (16); the Kawahara equation (3) corresponds to retention of the next cubic
term in (16).

The previous papers devoted to numerical solution of the linear stability problem
mostly concentrated on a search for neutral stability curves, or instability parameters
for the most unstable mode (Whitaker 1964; Anshus & Goren 1966; Krantz & Goren
1971; De Bruin 1974; Pierson & Whitaker 1977; Chin, Abernathy & Bertschy 1986;
Floryan, Davis & Kelly 1987). Plots of growth rate ωr and phase wave velocities
−ωi/k vs. wavenumber k have been presented in a rather narrow long-wavelength
range for mostly unstable waves.

Relation (16) has become a landmark for the derivation of many reduced asymptotic
nonlinear models (see the review paper by Cross & Hohenberg 1993). In general, these
models are valid for small Reynolds and large Weber numbers. Going outside the
range of validity of (16) and ensuing nonlinear models might lead to incorrect
conclusions. There are several reasons to clarify the behaviour of the exact dispersion
relation.

(i) As is well-known, the character of the dependence ωr(k) in the instability range
may fundamentally change the dynamical response of the nonlinear system. As one
may conclude from the papers devoted to linear stability analysis, the growth rate
ωr as a function of k for small but finite k markedly differs from the asymptotic
quadratic law in (16), ωr ' k2.

(ii) If the linear dynamics of the film flow is examined, only unstable modes are
interesting. This stems from the fact that the stable modes are damped, and therefore
after some time do not contribute to the dynamics. This concept should be revised if
nonlinear dynamics is considered. Namely, the fact that the stable short-wavelength
modes are damped is not sufficient; it is crucially important how fast they are damped.
The rate of damping controls the spectrum of excited modes. This issue is pivotal in
the theory of inertial manifolds (Foias, Sell & Temam 1988). If the damping is small,
the energy transfer to the short-wavelength modes by nonlinear effects might be not
balanced by linear damping and some singular behaviour will appear. In the opposite
case, if the damping is too large, the true spectrum of the solution might easily be
truncated. The published pictures of ωr(k) show much slower damping than ∼ k4 in
(16).

(iii) Dispersive effects of finite-wavenumber modes might be important. Diminish-
ing of the phase velocity in the long-wavelength range was reported in many papers
(Whitaker 1964; Anshus & Goren 1966; Krantz & Goren 1971; Pierson & Whitaker
1977). However, the behaviour of dispersive effects in the finite-wavenumber range is
unknown.

The goal is therefore to obtain the dispersion relations in a broad range of
wavenumbers and to shed light on their behaviour both in the instability range, and
when there is stability.

To elucidate the situation, the simplest flow is considered at the beginning: a film
falling down a vertical wall in the absence of surface tension. The only parameter
specifying the flow is the Reynolds number R. The results are presented in figure 2. A
few properties of the plots deserve special attention. First, the growth rate is bounded
from above. Second, the short-wavelength modes are slightly damped. These two
properties imply that the system has some tendency to be self-regularized due to
viscosity even in the absence of surface tension. Third, though formally ωr ∼ R k2

for small k (see (16)), the real range of such a dependence is rather small. For
R = 10 the region in which quadratic law applies is hardly distinguishable, and
the relation ωr vs. k looks much more like ωr ∼ k for k 6 0.4. A similar linear
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Figure 2. Exact dispersion relations for R = 1, 10, 100 and θ = π/2,W = 0:
(a) growth rate ωr vs. scaled wavenumber k; (b) phase velocity −ωi/k vs. wavenumber k.

dependence, ωr ∼ k, appears in many hydrodynamical situations and typically leads
to the emergence of large structures (the so-called alpha-effect in hydrodynamics and
magneto-hydrodynamics; see Frisch, She & Sulem 1987). These important features
appear at finite wavenumbers and fall beyond the scope of conventional asymptotic
theories.

Figure 3 shows the maximal amplification vs. Reynolds numbers in the range from
1 to 1000 in the absence of surface tension. The waves are amplified most at R = 7.75.

To study the impact of surface tension, consider a typical case with parameters
R = 10, θ = π/2, W = 50. The results are shown in figure 4. Recall that surface
tension does not affect the dispersion relation for small k. As a result, ωr ∼ k
at small k, though the maximal growth is markedly smaller than that in figure 2
for R = 10. The unexpected outcome is that the finite-wavenumber modes travel
faster the shorter they are – an observation which apparently has not been made
before. This issue has important consequences for nonlinear dynamics. The physical
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Figure 3. Maximal growth rate max (ωr) vs. Reynolds number R.
R increases from 1 to 1000, θ = π/2,W = 0.

explanation of such phenomenon is yet to be found. Another important effect is
that the damping rate in the physically interesting range (where the damping is not
very strong) behaves approximately like ωr ' −αk, α = 0.38. This means that even for
rather large surface tensions the damping of finite-wavenumber modes is not nearly as
strong (∼ k4) as could be concluded from asymptotic relation (16). For k > 1.75, the
damping rate begins to decay sharper than linearly (not shown here). For very large
wavenumbers the damping rate and phase velocity tend to their asymptotic values,
ωr ' −Wk, −ωi/k ' 1 (Yih 1963). Numerical experiments suggest that the dispersion
relation approaches this asymptotic short-wavelength limit at k > ka 'WR.

The comparison of the exact dispersion relation with conventional theories in
figure 4 leads to other important conclusions. For small k the long-wavelength
expansion (16) underlying the Benney, Kuramoto–Sivashinsky and Kawahara models
coincides with the exact dispersion relation. However, it substantially over-estimates
the maximal growth rate occurring at small but finite wavenumbers and yields much
sharper damping than that in the exact dispersion relation. Dispersion effects are
completely disregarded in the KS equation. Kawahara’s dispersion term (Topper &
Kawahara 1978) improves the representation of the phase velocity at very small k,
but at larger k it leads to negative phase velocity, in contrast with exact dispersion
relation. Numerical tests corroborate the conventional conclusion that the KS-like
models are suitable only for flows with small Reynolds and large Weber numbers,
(R/W )1/2 � 1. This means that if, say, R = 3, surface tension should be W ' 50, i.e.
quite large. As a result, the KS-like models are applicable in a quite small range of
flow parameters.

Note that for fixed surface tension the band of unstable modes increases asymp-
totically as R1/3 (Anshus 1972; see figure 2 for R = 10, 100). At the same time, the
range of applicability of the asymptotic quadratic law (16), ωr ∼ k2, shrinks as R−1

(Yih 1963). As a result, for larger Reynolds numbers the region of validity of the
quadratic law among unstable modes becomes virtually invisible (see figure 5 below).
Therefore, the over-generalization of the correctness of asymptotic long-wavelength
expansions may blur the real dependence of ω as a function of wavenumber k.

The dispersion relation of the integral-boundary-layer model is presented in the
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Figure 4. Comparison of exact dispersion relations for R = 10, θ = π/2, W = 50 with the
Kuramoto–Sivashinsky, Kawahara, and integral-boundary-layer models: (a) growth rate ωr , and
(b) phase velocity −ωi/k vs. wavenumber k.

Appendix. (Note that, to the best of my knowledge, apparently all papers devoted to
the boundary-layer approach use average velocity as velocity scale, and pressure and
surface tension scales are based on kinetic energy. At the same time, in the papers
devoted to the Benney and KS equations and used in the experimental measurement
of Gollub’s group, and adopted in the present paper, the interface velocity has been
taken as the velocity scale, and pressure and surface tension scales are based on
potential energy. To compare the dispersion relation of the integral-boundary-layer
(IBL) model with the exact dispersion relation and long-wavelength expansions, I
rederive the IBL equations briefly in Appendix A.)

The IBL model represents the functional dependence of ω on k much better than
the long-wavelength asymptotic expansions. The growth rate obtained from the IBL
model is very close to the exact growth rate. However, the dispersive effects are
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Figure 5. Growth rate ωr vs. wavenumber k for the following parameters: curve 1–R = 29, θ = 6.4◦,
W = 35, corresponds to the experiments by LG; curve 2–R = 50, θ = π/2, W = 14, corresponds to
the low-to-moderate surface tension case when the integral-boundary-layer theory fails.

substantially misrepresented for finite-wavelength modes. The dispersive effects are
essential for the nonlinear dynamics (see the last section); therefore, it is important
to reproduce them correctly. The additional non-universality of the IBL models is
discussed briefly in Appendix A.

For finite-wavenumber modes the inclination yields some damping effect (not
shown here). However, in the absence of surface tension, the damping rate of very
short modes for the flow down an inclined plane approaches zero, corresponding to
the asymptotic result by Yih (1963). This means that surface tension, though small,
should be included in the models of downflowing films to ensure regular behaviour.

Note that the attempts to introduce more terms of higher power in k in asymptotic
expansions (16) to capture these finite-wavenumber effects lead to a rather limited
improvement. For instance, Topper & Kawahara (1978) added a cubic dispersive term
(∼ ik3) to (16). This dispersive term improves the model in the long-wavelength range,
k � 1 on figure 4. However, beyond this range the phase velocity according to the
Kawahara equation becomes negative, in contrast to the exact phase velocity. Hence,
this improvement makes sense in the range of validity of the original KS equation
for (R/W )1/2 � 1, where the discrepancy between the exact and approximate phase
velocities appears at strongly damped modes and therefore does not affect the result-
ing dynamics. The next term of the long-wavelength expansion (16) proportional to
k4 may change sign depending on the flow parameters, and may therefore lead to the
instability of short-wavelength modes rather than to the damping (Kliakhandler &
Sivashinsky 1997). Its inclusion in the asymptotic expansion (16) is therefore prob-
lematic. The higher terms in k, ∼ ik5, k6, etc., have the same difficulties. Attempts to
approximate the exact dispersion relations by high-order polynomials based on long-
wavelength expansions may lead to improvement in a limited range of parameters,
but beyond this range such an approximation behaves worse.

The conclusions of this study of the linear stability problem are (i) viscosity
restrains the instability rate even in the absence of surface tension; (ii) the instability
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rate of small but finite k behaves like ωr ∼ k, for R > 10; (iii) the damping rate of
finite-wavenumber modes is rather slow, and in some range may be represented as
ωr ' −αk even at large surface tensions; (iv) the non-trivial dispersive behaviour of
finite-wavenumber modes is that the shorter modes travel faster.

4. Construction of the nonlinear model
As has been shown in the previous section, the exact dispersion relation of a down-

flowing film cannot be well approximated either by long-wavelength expansions, or by
the integral-boundary-layer theory. However, to reproduce at least linear behaviour,
the use of a correct dispersion relation is vitally important. I therefore include the
numerically evaluated dispersion relation in the nonlinear model constructed below.

In the linear approximation, the representation h = aeikx+ωt can be recast as

ht +
1

2π

∫ ∞
−∞
−ωeik(x−y) h(y, t) dy dk = 0. (17)

Here the kernel ω(R,W , θ, k) of the integral operator is found numerically in the pre-
vious section by solving the pertinent Orr–Sommerfeld eigenvalue problem. Note that
problem (13)–(15) is invariant under the transformation k → −k, ω → ω∗, φ→ φ∗
(the asterisk means complex conjugation). At the same time, the Fourier coefficients

ĥk of the real function h(x) have the following property: ĥ−k = ĥ∗k . As a result, the
integral term in (17) yields a real expression.

To obtain the simplest nonlinear term, two procedures may be used: (i) the kine-
matic boundary condition (10) applied to a slow-varying initial parabolic velocity
profile (Benney 1966), or (ii) weakly nonlinear asymptotic expansions (Shkadov 1973;
Nepomnyashchy 1974; Sivashinsky & Michelson 1980). Both techniques yield the
same quadratic nonlinear term 4hhx. Ultimately, this may be understood from the
kinematic boundary condition (10), written in the conservative form: Ht + qx = 0,

where q =
∫ H

0
u dy. For the slowly varying basic velocity profile u = 2hy−y2, the flow

rate q = 2
3
H3, and Ht + 2H2Hx = 0; its expansion as H = 1 + h near H = 1 gives

ht + 4hhx = 0. Combining (17) with the kinematic quadratic nonlinearity 4hhx gives
the following model:

ht + 4hhx + L[h] = 0, L [h] =
1

2π

∫ ∞
−∞
−ω eik(x−y) h(y, t) dy dk. (18)

Equation (18) is the main result of the paper, and is the subject of what follows.
The combination of the exact linear term with the simplest kinematic nonlinearity

is a classical heuristic idea, described in detail in the monograph by Whitham (1974).
This approach has been used in many fields, including peaking and breaking of
waves on shallow water (Whitham 1974), broad-banded modulations of Stokes waves
(Trulsen et al. 2000), and interfacial dynamics in other shear flows (Hooper 1985;
Frenkel 1988; Papageorgiou, Mandarelli & Rumschitzki 1990). Its application was
especially remarkable in convection, where it led to the well-known Swift–Hohenberg
equation (Swift & Hohenberg 1977) and in flame propagation, where the Frankel
equation appeared (Frankel 1990). The tractable situations considered in these papers
allow one to obtain the analytical expressions for the spectral kernels. I propose to
use the numerically evaluated kernels in the general situation.

The combination of the exact linear term with the simplest kinematic nonlinearity
gave sensible results in all systems where it was applied. The method is used in
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situations where, for various reasons, the long-wavelength expansions are not appli-
cable. In particular, in film flows with moderate Reynolds number there is no reason
to apply the conventional long-wavelength expansions, since the system is far from
the onset of instability. As a result, some ad-hoc theory must be used. Therefore,
equation (18) may be regarded as an alternative to the well-known IBL approach (see
the Introduction).

The long-wavelength expansion of ω in power series of k with retention of the first
few terms, valid for small Reynolds numbers R and large Weber numbers W , allows
the known weakly nonlinear models to be extracted from (18). Keeping instability and
damping terms results in the KS equation (in original variables, without rescaling):

ht + 2hx + 4hhx +
[

8
15
R − 2

3
cot θ

]
hxx + 2

3
Whxxxx = 0. (19)

Retaining one more term yields the Kawahara equation (Topper & Kawahara 1978).
The model (18) is expected to exhibit the main qualitative features of the interfacial

film dynamics in a broad range of Reynolds number, surface tension, and inclination
angle.

5. Results of numerical simulations
Equation (18) subject to periodic boundary conditions was simulated by a standard

pseudospectral technique. The Runge–Kutta fourth-order scheme was used for the
time advance. The spatial discretization was such that the typical wavelength λm =
2π/km of the most unstable wavenumber km was covered by at least 50 points to
ensure fair resolution of the computed solutions. The typical time step was 10−2.
Tests with smaller time steps gave indistinguishable results. Random small-amplitude
fields, periodic or pulse-like functions were used as initial conditions. Typically,
the simulations were conducted on long spatial domains (up to 100λm); boundary
conditions were applied to the whole length of the domain, though only a part of the
intervals is presented below to make the wavy structures visually distinguishable.

Note that formally it is necessary to know ω(R,W , θ, k) for −∞ < k < ∞ to
use the spectral technique. On the other hand, ω(R,W , θ, k) might be evaluated
numerically only on some finite interval. Note however that for k large enough the
pertinent short-wavenumber modes are strongly damped, and details of this strong
damping are not essential. Numerically the exact dispersion relation was obtained up
to k values such that |Re ω| = 100ωm i.e. up to such k that they are damped 100
times stronger than the most unstable mode with growth rate ωm. For larger k, the
parabolic extrapolation of ω in the short-wavenumber range was used. Details of the
approximation of the exact dispersion relation in the strongly damped range have no
impact on the computed dynamics; this was independently checked.

The results presented below use two sets of parameters. The first set is R = 29,
θ = 6.4◦, W = 35 which corresponds to the experimental data of Liu & Gollub
(1994, hereafter referred to as LG). The second set is R = 50, θ = π/2,W = 14 where
the IBL model fails but solutions of the Navier–Stokes equation behave regularly
(Ramaswamy, Chippada & Joo 1996, hereafter referred to as RCJ).

The growth rate ωr vs. k for these two cases is shown in figure 5. The phase
velocities are similar to those in figure 4(b) and are not shown here. As may be seen
from figure 5, (i) the instability rate at small k is well approximated by the linear
dependence, ωr ∼ k, (ii) the most unstable modes are long enough with wavenumbers
km = 0.15, 0.3 for the first and second sets, respectively, and (iii) the damping rate
decays rather slowly at larger k.
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Figure 6. Spatio-temporal evolution of the initial small-amplitude noise. The parameters R = 29,
θ = 6.4◦, W = 35 correspond to the experimental conditions of LG. A part of a longer interval of
length 100λm is shown.

Note that for the parameters used in experiments by LG (first set), the KS–
Kawahara dispersion relation for ωr , (16), predicts the maximal growth rate ωm = 0.67,
i.e. 45 times larger than the actual maximal growth rate ωm = 0.015, figure 5; the
IBL model predicts ωm = 0.0683831, i.e. more than 4 times larger than the actual
value. For the second set of the parameters, IBL model gives ωm = 0.184, 4 times
larger than the actual ωm = 0.0461; the KS–Kawahara dispersion relation (16) gives
ωm = 19.05, i.e. it is over-estimated 400 times.

Figure 6 shows the spatio-temporal evolution of small-amplitude initial noise in a
long spatial domain for the first set of parameters. Figure 7 shows the corresponding
interface spectra. At the first stage of the evolution the train of most unstable waves
appears. The leading group of Fourier modes lies in the vicinity of km, figure 7(a).
Further coalescence of these waves leads to the emergence of long solitary-like
structures with ripples before the peaks. As a result, the short-wavelength tail of the
spectrum diminishes (for k ∼ (2− 4)km), but its long-wavelength part becomes more
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Figure 7. Evolution of the spectra of the interfaces shown in figure 6 for the experimental conditions
of LG. The spectra shown are obtained by averaging over relatively short time intervals ∆t = 0.45 s.
(a), (b), (c) The spectra of the interface at the mean time t = 1.76, 5.28, 16.28 s, respectively. The
length scale along the vertical axis is the same for all three parts.

and more dominant (for k < km), figure 7(b, c). The typical length of these solitary-like
waves is about 4λm ' 21.4 cm which corresponds to the leading mode ' km/4 in
figure 7(c). The velocity of the waves is about 25 cm s−1.

An important aspect of the evolution shown on figure 6 is the interaction of
the waves. Figure 8 is a detailed picture of the interaction of a large pulse with
smaller waves; the idea for this simulation was proposed to the author by Professor
H.-C. Chang. The distinctive feature of the dynamics on figure 8 is an adsorption of
small-amplitude waves by a large-amplitude pulse in the central part of the picture.

To show the structure of the solitary-like waves in detail, figure 9 displays two
solitary waves obtained by the imposition of periodic initial conditions with amplitude
0.05.

All the dynamics shown in figures 6 and 8 with coalescence of the waves, formation
of long solitary-like pulses and ripples in front of the pulses is very similar to that
observed by LG and computed by RCJ. It is remarkable that the fine structure
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Figure 8. The adsorption of small-amplitude waves by a large-amplitude solitary-like pulse. The
dynamics is shown in a reference frame moving with velocity 1 of the undisturbed interface. Initial
conditions contain large and small pulses. A part of longer interval with length 100λm is shown.
R = 29, θ = 6.4◦,W = 35 correspond to the experimental conditions of LG.

of the ripples with length about λm/5 ' 1 cm between pairs of subsidiary peaks is
reproduced fairly well. The length of the large solitary-like waves is greater than
20 cm in figure 6; their velocity is about 25 cm s−1; both parameters are close to those
observed by LG and RCJ. However the substantial discrepancy with the reported
results is that the amplitude of the pulses (being about 0.25 in figures 6, 8, and 9) is
smaller by about 4 times than obtained by LG and RCJ. The difference apparently
appears due to the simplified nonlinearity.

The second set of parameters demonstrates the potential of the model (18). This case
corresponds to G = 100, T = 100, θ = π/2 from RCJ. The Benney and KS equations
are inappropriate in such a situation since the Reynolds number is not small; the
models over-estimate the maximal growth rate 400 times. As was reported by RCJ,
the IBL model also fails in this case of low-to-moderate surface tension. However, the
full Navier–Stokes equation gives well-behaved solutions. Model (18) also generates
regular solutions for this set of parameters. Three wavy profiles corresponding to figure
8(b, d, f) of RCJ are shown in figure 10. The qualitative agreement with computations
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Figure 9. Solitary waves for R = 29, θ = 6.4◦,W = 35 obtained by the imposition of periodic initial
data of amplitude 0.05. A part of longer interval with length 20λm is shown. The data corresponds
to the experimental conditions of LG. λm = 5.35 cm.

by RCJ is noteworthy. As may be seen, the amplitude of the waves increases with
their length. The form of a solitary wave with ripples and length 4λm is very similar
to that in figure 8(b) of RCJ. The waves with length λm and 2λm have no permanent
form as in their figure 8(d, f).

The solutions in the above cases have the broad spectra content (figure 7) that
corresponds to the presence of two length scales: solitary-like waves 4–5 times larger
than the most unstable mode with length λm, and fine ripples 5–7 times shorter than
λm. Spectra of the solutions decay relatively slowly.

Many series of simulations of equation (18) have been conducted for various values
of the parameters and initial conditions that are not reported here. It was found that
the model (18) generates well-behaved and sensible solutions in a wide range of
parameters R,W , θ. No singular behaviour was identified up to very small values of
surface tension, W ∼ 1.

There exist other nonlinear models with linear dependence ωr ∼ k in the instability
range where large structures emerge (Frisch et al. 1987; Gutman & Sivashinsky
1990). In these models the stretching process does not saturate and the length of the
final structure is the whole computational domain. In thin liquid films, however, the
solitary-like waves acquire a long finite size independent of the system length (for
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Figure 10. Interfacial profiles for R = 50, θ = π/2, W = 14 that correspond to G = 100, T = 100,
θ = π/2 in the paper by RCJ. Periodic initial data of amplitude 0.05 have been used. A part of
longer interval with length 20λm is shown. (a), (b) Snapshots at particular time instants; (c) final
permanent solitary wave.

sufficiently long systems). It is notable that the simple equation (18) captures such a
highly non-trivial phenomenon.

At the initial stage of the wave interaction, the distance between the solitary waves
grows due to coalescence. If the waves become too separated in space, the flat interface
between them, being unstable, gives birth to a new solitary wave. As a result, the
distance between solitary waves remains nearly constant through competition between
coalescence, and instability.

A theory of the stretching (coarsening) of the solitary waves in film flows for
moderate Reynolds numbers was proposed by Chang et al. (1996) based on the IBL
model. Considering binary, relatively slow interaction of the pulses, they discovered
certain scale invariance properties of the wave dynamics, and described how the
pulses move and separate in time and space. A comparison of the proposed theory
with predictions by Chang et al. (1996) will be reported elsewhere.

To elucidate the stretching mechanism leading to the formation of the solitary-like
waves, additional simulations were undertaken. In these computations the dispersive
part of ω was ignored. The striking result is that the solitary-like waves completely
disappear. Instead of them, somewhat long saw-like structures with very slow decay
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of the spectrum emerge. As a result, the stretching may be partly attributed to the
features of ωr . At the same time, the formation of the ripples and the additional
extension of the waves occurs due to non-trivial dispersive effects.

6. Conclusion
The impetus for the present study was the observation of robust long solitary-like

waves far downstream in experiments and numerical simulations of film flows that
resembles the inverse energy cascade in two-dimensional turbulence. A new simple
model (18) to describe nonlinear interfacial dynamics in thin film flows is proposed.
The model is based on the combination of the simplest nonlinear kinematic term with
the exact integral linear operator. The spectral kernel of the linear operator is found
by numerical solution of the pertinent Orr–Sommerfeld eigenvalue problem. Results
of numerical simulations of equation (18) show close similarity with experimental
observations and simulations of the full Navier–Stokes equations. In particular, the
coalescence of the waves, the fine structure of the ripples before the peaks, and the
length and velocity of the solitary-like waves are well reproduced. The amplitude of
the waves is, however, substantially underestimated, probably as a consequence of the
simplified nonlinear term. The combination of simple nonlinear terms with the exact
integral operator based on numerical evaluation of the dispersion relation may be
fruitful in deciphering nonlinear dynamics in other systems.
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Frenkel, S. W. Joo, A. A. Nepomnyashchy, D. T. Papageorgiou, V. Ya. Shkadov, Dr J.
Liu, O. Takeshi and Yu. Ya. Trifonov for interesting and stimulating conversations.
I am very grateful to Dr S. J. Weinstein for computing of dispersion relations to
compare with. Remarks and suggestions of Professor H.-C. Chang are very much
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comments of referees substantially improved the paper. The project was supported
by the Applied Mathematical Sciences subprogram of the Office of Energy Research,
US Department of Energy, under contract DE-AC03-76-SF00098.

Appendix. Integral boundary layer theory
In this approach the spanwise momentum balance is assumed to be dominated by

hydrostatic forces. As a result, the following terms are dropped from the equations
and boundary conditions: convective and viscous terms in (6), terms of order h2

x in the
tangential stress condition, and terms of hx and higher order in the normal boundary
condition.

As a result, the model is described by the following set of equations:

ux + vy = 0, py = − cot θ, (A 1)

R
(
ut + uux + vuy

)
= 2− 2px + uxx + uyy, (A 2)

u(0) = v(0) = 0, Ht + qx = 0, where 2
3
q =

∫ H

0

u dy, (A 3)

uy + vx + 2Hxvy = 0, −p+ p0 + vy = WHxx at y = H(x). (A 4)

The pressure may be found from (A 1) and (A 4). Substituting the pressure expression
in (A 2) and integrating (A 2) over the thickness, together with use of the continuity
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equation and the tangential boundary condition, yields the averaged longitudinal
momentum equation:

2
3
qt +

(
Γq2

H

)
x

=
1

R

[
2H − 2 cot θHHx

+2

∫ H

0

(ux
∣∣
y=H

)xdy

+2WHHxxx + 2

∫ H

0

uxxdy − τw + 4Hxux
∣∣
y=H

]
. (A 5)

Here the shape factor Γ , the wall shear τw and integrals in (A 5) are found through
imposition of the conventional self-similar parabolic velocity profile:

u(y) =
q

H

[
2
y

H
−
( y
H

)2
]
, Γ =

H

q2

∫ H

0

u2dy =
8

15
,

τw = uy
∣∣
y=H

=
2q

H2
, ux

∣∣
y=H

=
( q
H

)
x
.

The final set of the mass balance equation and averaged longitudinal momentum
equation is:

Ht + 2
3
qx = 0, (A 6)

2
3
qt +

8

15

(
q2

H

)
x

=
1

R

[
2H − 2 cot θHHx + 2WHHxxx

+
4qH2

x − 2q

H2
− 4Hxqx + 4qHxx

H
+

10

3
qxx

]
. (A 7)

Linear stability analysis of (A 6), (A 7) around the basic Nusselt solution H = 1, q = 1
yields

H = 1 + aeikx+ωt, q = 1 + beikx+ωt, (A 8)

ω2 +
8

5
ikω − 8

15
k2 +

1

R

[
6ik + 4ik3 + 3ω + 5k2ω + 2k4W + 2k2 cot θ

]
= 0. (A 9)

Note that if the velocity profile is chosen in the form

u(y) = α
q

H

[
2
y

H
−
( y
H

)2
]

i.e. the conventional form up to free multiplicator α, the parameter α is not rescaled
from the resulting equations (A6)–(A7). As a result, some additional considerations
are needed to find α. Usually, α is taken such that the velocity of long waves in
the IBL model coincides with the exact velocity of very long waves. This additional
assumption has apparently not been discussed earlier. As a result, constant α is
different for different choices of dimensionless parameters, being α = 1 for the
parameters adopted in this paper, and α = 3/2 in many papers devoted to the
IBL model. This non-universality of the IBL model does not, however, diminish its
importance.
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